CO2 exposure at pressure impacts metabolism and stress responses in the model sulfate-reducing bacterium Desulfovibrio vulgaris strain Hildenborough

نویسندگان

  • Michael J. Wilkins
  • David W. Hoyt
  • Matthew J. Marshall
  • Paul A. Alderson
  • Andrew E. Plymale
  • L. Meng Markillie
  • Abby E. Tucker
  • Eric D. Walter
  • Bryan E. Linggi
  • Alice C. Dohnalkova
  • Ron C. Taylor
چکیده

Geologic carbon dioxide (CO2) sequestration drives physical and geochemical changes in deep subsurface environments that impact indigenous microbial activities. The combined effects of pressurized CO2 on a model sulfate-reducing microorganism, Desulfovibrio vulgaris, have been assessed using a suite of genomic and kinetic measurements. Novel high-pressure NMR time-series measurements using (13)C-lactate were used to track D. vulgaris metabolism. We identified cessation of respiration at CO2 pressures of 10 bar, 25 bar, 50 bar, and 80 bar. Concurrent experiments using N2 as the pressurizing phase had no negative effect on microbial respiration, as inferred from reduction of sulfate to sulfide. Complementary pressurized batch incubations and fluorescence microscopy measurements supported NMR observations, and indicated that non-respiring cells were mostly viable at 50 bar CO2 for at least 4 h, and at 80 bar CO2 for 2 h. The fraction of dead cells increased rapidly after 4 h at 80 bar CO2. Transcriptomic (RNA-Seq) measurements on mRNA transcripts from CO2-incubated biomass indicated that cells up-regulated the production of certain amino acids (leucine, isoleucine) following CO2 exposure at elevated pressures, likely as part of a general stress response. Evidence for other poorly understood stress responses were also identified within RNA-Seq data, suggesting that while pressurized CO2 severely limits the growth and respiration of D. vulgaris cells, biomass retains intact cell membranes at pressures up to 80 bar CO2. Together, these data show that geologic sequestration of CO2 may have significant impacts on rates of sulfate reduction in many deep subsurface environments where this metabolism is a key respiratory process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell-wide responses to low-oxygen exposure in Desulfovibrio vulgaris Hildenborough.

The responses of the anaerobic, sulfate-reducing organism Desulfovibrio vulgaris Hildenborough to low-oxygen exposure (0.1% O(2)) were monitored via transcriptomics and proteomics. Exposure to 0.1% O(2) caused a decrease in the growth rate without affecting viability. Concerted upregulation of the predicted peroxide stress response regulon (PerR) genes was observed in response to the 0.1% O(2) ...

متن کامل

Deletion of the rbo gene increases the oxygen sensitivity of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough.

The rbo gene of Desulfovibrio vulgaris Hildenborough encodes rubredoxin oxidoreductase (Rbo), a 14-kDa iron sulfur protein; forms an operon with the gene for rubredoxin; and is preceded by the gene for the oxygen-sensing protein DcrA. We have deleted the rbo gene from D. vulgaris with the sacB mutagenesis procedure developed previously (R. Fu and G. Voordouw, Microbiology 143:1815-1826, 1997). ...

متن کامل

Recovery of temperate Desulfovibrio vulgaris bacteriophage using a novel host strain.

A novel sulfate-reducing bacterium (strain DePue) closely related to Desulfovibrio vulgaris ssp. vulgaris strain Hildenborough was isolated from the sediment of a heavy-metal impacted lake using established techniques. Although few physiological differences between strains DePue and Hildenborough were observed, pulse-field gel electrophoresis (PFGE) revealed a significant genome reduction in st...

متن کامل

Targeted gene-replacement mutagenesis of dcrA, encoding an oxygen sensor of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough.

A gene-replacement mutagenesis method has been developed for the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough and used to delete dcrA, encoding a potential oxygen or redox sensor with homology to the methyl-accepting chemotaxis proteins. A suicide plasmid, containing a cat-marked dcrA allele and a counter-selectable sacB marker was transferred from Escherichia coli...

متن کامل

Oxygen-dependent growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough.

Desulfovibrio vulgaris Hildenborough, a sulfate-reducing bacterium classified as an obligate anaerobe, swam to a preferred oxygen concentration of 0.02 to 0.04% (0.24 to 0.48 microM), a level which also supported growth. Oxygen concentrations of 0.08% and higher arrested growth. We propose that in zones of transition from an oxic to an anoxic environment, D. vulgaris protects anoxic microenviro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014